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SUMMARY
PROBLEM
Detection of a sinusoid obscured by white noise.
RESULTS

1. Currently employed methods for the detection of a sinusoid obscured by white
noise were related to three classical problems of detection theory. The discrete Fourier
transform, the power spectrum, and the averaged power spectrum each were shown to be
the optimal processor (in the sense of making a least-risk decision) for a particular signal
model.

2. The first- and second-order statistics under Hj (signal plus noise) and Hg (noise
alone) were compiled for seve ul related processing structures of current interest. Included
were the autocorrelation function and the recursive exponential correlator.

RECOMMENDATIONS

1. Extend the ROC (receiver operating characteristic) performance results of this
report to include the autocorrelation function and recursive exponential correla: or process-
ing structures.

2. Investigate performance via the ROC curve of the discrete Fourier transform,
autocorrelation function, and recursive exponential correlator processing structures when
the sinusoid’s frequency varies over the observation interval.
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PROCESSOR STRUCTURES FOR THE DETECTION OF A
SINUSOID OBSCURED BY WHITE NOISE

I. INTRODUCTION

This report has two main thrusts. Primarily, the desire is to relate currently
employed methods for the detection of a sinusoid obscured by white noise to three classical
problems of detection theory. It will be shown that the discrete Fourier transform, the
power spectrum, and the averaged power spectrum are each the optimal processor (in the
sense of making a least-risk decision) for a particular signal model. The utilization of one of
these processors implicity assumes that particular signal model to exist and thus defines an
upper bound on performance even if the actual received signal process could admit a proc-
essing scheme whose performance would be superior. Of secondary importance, the first-
and second-order statistics under H| (signal plus noise) and Hg (noise alone) are compiled
for several related processing schemes of current interest. Included are the autocorrelation
function and the recursive exponential correlator. These statistics will prove useful in pre-
dicting the performance of such schemes in light of the processor structures already
mentioned.

Our fundamental goal is the detection of a sinusoid obscured by white noise. If the
form of the received signal was known exactly, the optimal detector would simply threshold
the output of a filter matched to the signal waveform. Unfortunately, the actual situation
encountered is one where phase, amplitude, and frequency uncertainty usually exists.

A commonly employed processor structure for detection is a display of the discrete
Fcurier transtform magnitude squared (IDFTI2) of the observed time series (i.e.. the power
spectrum). In addition, averaging of the power spectra from several consecutive data sets
often is performed either visually or automatically to increase the detectability of particu-
larly weak signals.

This report will discuss several potential configurations for the detector structure.
The reference peint tor their comparison will be the tnllowing two hypothesis testing
problem:

Hy: Xen) = S(n) + n(n)
Hp: X(n) = n(n), )
where:
0<n<N-|

x(n) the observed sequence
S(n) = A cos (Zm'onA + ¢) the signal sequence

n(n) the white Gaussian noise sequence: n(n) ~ N(O.oz).
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The assumption is made that the observed sequence was obtained from a continuous time
series (0 < t < (N-1)A) bandlimited to W hertz and sampled every A = 1/2W seconds.

The motivation for considering several detector structures can be found in the details
of any one particular problem. Due to considerations of computational speed or the under-
lying physics of a given situation, one structure may be preferred over another. For example,
discrete Fourier transforms are faster to compute than autocorrelation functions. However,
the ability to window the autocorrelation function before transforming to the frequency
domain provides a certain degree of flexibility in what the resulting display looks like.
Another concern is stability of the sinusoid. If its phase or frequency vary with time,
averaging of power spectra computed from short consecutive data sets may be necessary to
achieve the best detectability.

The organization of this report is as follows. In Section 11, tlic likelihood ratio proc-
essor is defined and its performance evaluation in terms of the ROC (receiver operating
characteristic) curve is discussed. The next three sections develop three optimal receiver
structures — SKE (signal known exactly), SKEP (signal known except for phase), and SKEP
Independent Increments. Section VI defines the discrete Fourier Transform (DFT) and
relates it to each of the three optimal detector structures mentioned above. The autocorre-
lation function and its relationship to the power spectrum of a sequence are the subject of
the following section. Lastly, Section VIII develops expressions for the REC (recursive
exponential correlator).

Il. DETECTION THEORY
A. The Likelihood Ratio

A helpful baseline from which to compute various detector structures is that of the
likelihood ratio processor. Let the vector of observables be denoted by

X = [X(0)...,XN-D)T. 20

Based upon the observation vector X € x, the processor must make a decision (Dg or D) as
to which hypothesis it believes is true. Classical detection theory has shown that decisions
based upon the likelihood ratio are optimum for a wide range of goodness criteria (Peterson,
Birdsall, and Fox, 1954)

Ay & PEHD Dy
N p()_qu) SO

2.2)

Birdsall has shown more generally that any optimality criterion based on *‘detection
probability” P(D1/H ) and *‘false alarm probability” P(D | |Hg) where good decisions ure
preferred over bad leads to the calculation of A(X) as the decision statistic (Birdsall. 1973).
Thus, a separation is achieved between the processing of X and the actual optimality crite-
rion chosen which arises in the selection of a threshold value n.

The situation may arise where one or several parameters under either or both Hg and
Hj are uncertain. These are then modeled as random variables and any prior knowledge



about them is summarized by a priori probability density functions p(8¢) and p(6 |). The
desired decision statistic now becomes the ratio of marginal probability density functions
onx:

/ p(X10),H)) p(8,)d8,
e

AK) = . (2.3)
/ p(X18.Hp) p(8g)dl g

99

where @) €©) and 65 €6€. A block diagram of the processor structure implied by (2.3) is
given in Figure 2.1,

B. Performance

The complete description of a detection device includes both the processor itself
(i.e., the mathematical transformation from observation space to decision statistic) and the
performance of the processor evaluated with respect to the goodness criterion initially
chosen. As mentioned earlier, the likelihood ratio has been shown optimum for any good-
ness criterion based on *“‘detection probability” P(D{|Hj) and *false alarm probability
P(DIHg) where good decisions are preferred over bad. Thus, the appropriate description
of performance for a likelihood ratio computing device is its detection and false alarm
probabilities as a function of decision threshold. The precise definition of these terms
(which arise from within a RADAR and SONAR context) now will be given.

Since the likelihood ratio is simply a transformation of random variables (the obser-
vation vector X) to a one-dimensional decision statistic (A(X)), the likelihood ratio itself
will be a random variable whose probability density function will depend on which hypoth-
esis (Hg or Hy) is actually active on x. Recalling that the threshold n divides the decision
space, define

Pp & PDjIHy) é/cp(AIHI)d.'\ (2.4)
n
X m—— LK) ' Compare b—————"> Decision
D1 or Do
¥ I ].
P(n;)  P(8,) n

Figure 2.1. Likelibocd ratio processor.
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Peterson, Birdsall, and Fox introduced a graphical representation of Py versus Pg us a func-
tion of n known as the ROC (receiver operating characteristic) curve (Peterson, Birdsall, and
Fox, 1954). The ROC curve will be the means by which performance of the detection
receivers discussed in this report will be evaluated and compared.

1. SKE (Signal Known Exactly)

In the SKE problem, the rereived signal (when present) is known exactly. The
statistics are Gaussian under both 11) and Hy.

_ p(XIHy)
p(X|Hgp)

it Sl e i, S,

AX)

(the likelihood ratio)

" N-1
s 2 (X(n) - S(n))>
1 =()

— XD
_ @ro)N2

1|r
b3
[=]

B (]
—

I exp n=0
( Ewllml 20°

[N-1 ,
X(n) S(N) _ S(r)-

exp

e[S D xmsm-LY sm?| . 3.1

Note: Bandlimited white Gaussian Noise

$ N2

W Hz

E € signal energy

ok g

NA [N
A 5
=/ S(t)* dt = Z S(n)=. (3.2)
0 n=0
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Thus,
, N-1 l Nz-l
— ) sm)? = - S(n)?
202 n=0 - NOW n=0
~ E
> NO. (3.3)
N-1
AX) = exp = X(n) S(n)-— . (34)
0 n=0 0

Any monotonic function of A(X) will also be an optimal test statistic.

__EL1
en ACX) = o z X(n) S(n) (3.5)
NA
=-E+2 1 xosma. (3.6)
NO 0 0

The last term in each of the above two expressions is known as a “*matched filter.”

Substituting the expression for S(n),

N-1
> Xm) cos (2migna) = & (Qn A(X)+—). (3.7)
n=0 A No

Since the parameters A, 02. E, and Ng are known in the SKE problem, the above is simply a
monotonic function of A(X). Thus, a = Re{X( k)}, k = NfgA is an optimal decision statistic
[see Section VI for the definition of X(k)]. Computing the DFT of the observed sequence
wiil be the optimal processor when the signal is known exactly.

Elat,] = 2N
EIU|H0| =0
varfalHy | = varlalHgl = Xo?

In general, the entire ROC curve is necessary to completely specify performance.
However, in the SKE problem. performance is summarized by a single number known as the
detectability index d=. In this case, the distribution of the optimal decision statistic is
Gaussian under Hy and Hg with equal variances. By definition (Van Trees, 1968)

il




(EfalH|] - ElalHg])?

R
d- &
varlalHol
) 2
= &N (=N-SNR;SNR=A—)
20~ 202
= £ (3.8)
Ng

Detection and false alarm probability expressions corresponding to Eqs. (2.4) and (2.5) are

= arfe (In7n_d
PD = erfc* (d—-i) (3.9)
P = erfc, ('"T'ug) (3,10
where
= y
erfc. = —Iexp (—ﬁ) dx (3.11)
T vET I
X

The SKE performance curves are illustrated in Figure 3.1 on normal-normal paper. Note
that performance increases linearly on the negative diagonal as a function of d.

IV. SKEP (Signal Known Except for Phase)

In the SKEP prouvlem, the received signal (when present) is known except for its
phase:

S(n) = A cos (27ipA + ¢),
where: ¢ is a random variable distributed uniformly between -m and .

The statistics are conditionally Gaussian under H| and Gaussian under Hy,

T
AX» / A(X|¢) p(¢) do
-

n ) N-1
= —/ exp -E +-A X(n) cos(.’.ufOnA +¢)] do
3 - N

3

U e,

n
-
= exp |-£ '/ A a2+ cos (0 + ¢) do
-

[ No) ), o2

e
- E- A - 3 I/,
exp |-—11 [—(u~+b-)']~ 4.1)
_ NaJ 0 0-
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where:
X(k) = a+ib
k = NfoA
] = tan~! (b/a),

Note the following monotonic function of the likelihood ratio:
AX) « (a2 +b2) = XK, k = NfgA. (4.2)

. 2 . . - L. . . .
Thus, a~ + bl = IX(k)I2 is an optimal decision statistic |see Section VI for definition of
X(k)]. Computing the power spectrum of the observed sequence is the optimal processor
when the signal is known except for phase, with the phase having a uniform distribution.

The ROC curves of the optimal detector for the SKEP problem are given in Figure
4.1 (Roberts, 1965). The loss in performance due to phase uncertainty can be seen by com-
paring the SKEP curves with the SKE curves for the same value of ZE/NO. (See also Van
Treces. 1968.)

Two important points must be stressed with respect to this problem. First, it appears
that the loss in performance from SKE can be summarized by noting that the test statistic
contains twice as much noise (i.e., simply a 3-dB loss). Using this reasoning, the SKEP ROC
curve in Figure 4.1 for 2E/N@ = 9 roughly should be parallel to the SKE ROC curve for
2E/N0 =4. Note that the two ROC’s cross each other, indicating a more fundamental dif-
ferential in performance than can be accounted for by a simple adjustment of 2E/N0.

The second point concerns the use of a detectability index to compare performance
between two processors. A detectability index for the SKEP processor can be defined as in
Eq. (3.8).

INGK) = X2, k=Ngd (See Section VI.)
= l(u:+ b2)
N
E[INK)Hg] = o~
3 A2
= -t —
E[INKIH || = 0%+ =N
var [IN(K)IHg] = o#
4, g2 A°
var [IN(K)IH ] = o +o0-=—N
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Define:
5 ElNKIH{] - EllN()Hg])2

d‘.’
SKEP ~ var [Iy(k)IHg)
2
ATN\2
= _4__ = (ﬁ- SNR) 2
i 2
_ (E\2
(No) @3

On the basis of Egs. (3.8) and (4.3) alone, one might incorrectly conclude that the SKEP
processor will perform much better than the SKE processor when E/Ng > 2. Recall that the
only valid performance comparison is in terms of the ROC curve as shown in Figure 4.1.

(In retrospect, it can be seen that Eq. (4.3) does not take into account that

var [IN(k)IH|] # var [IN(k)iHg] and that the distributions of the test statistic are now
chi-square instead of Gaussian).

V. SKEP (Signal Known Except for Phase) INDEPENDENT INCREMENTS

In the SKEP Independent Increments problem the received signal (when present) is
known except for its phase

S(n) = A cos (2xfgnA + ¢p),

where:
¢ is a random variable distributed uniformly between -7 and .

9; is constant for €N < n < (£+1)N, L=0,...,L-1
but changes independently between increments.

Data sequence consists of L blocks, each of length N. The statistics are condition-
ally Gaussian under H and Gaussian under H,.

L-1
axy = JT axp
Q=
L-1
. b ] 9
= exp E'&—E] lo [A:(a'q'+b§)'/’]. (5.1)
0 =0 g
where:
Xe = [X(N), ... X1 -N-D]T

Xe(k) = ag + ibg, k = NfgA.



Note the following monotonic function of the likelihcod ratio:
L-]
Y g [i‘- (ag s bg) '/=] = I AX) +EE, (5.2)
2 No
=0 9 1
Furthermore, :
fn Ip(x) = x -2nV2mx, x>>1 ]
2
2 XT’ x<<1.
When
A2
N'SNR <K SNR = —
20¢
L-1 ' 5 L-1
S g [A2 (a§+b§)'/=] = AN (a§+b2). 5.3)
¢=0 o 407 ¢=0
Thus, averaging power spectra
L
1 Wy 2
L z N (a,Z + bq) 54
=0

approximately yields an optimal decision statistic for the SKEP independent increments
problem when N*SNR < < | (See Section VI).

Performance of the SKEP independent increments processor is given in Figure 5.1
(Thompson, 1972). ROC curves for 1, 5, 10, and 20 independent increments are illustrated.
The SKE ROC curve for the same 2E/Ng value is included as a reference. Note that L=1
corresponds to the SKEP processor discussed in Section IV. It can be seen easily from
Figure 5.1 the dramatic effect signal instability has on detectability. [Performance for the
detector structure in Eq. (5.4) for arbitrary SNR can be found in Marcum, 1960.]

V1. DISCRETE FOURIER TRANSFORM

A. Discrete Fourier Transform (DFT)

N-1
X(k) & z X(n) e~(27/NInk
=0
. N »
= a+ib; ab~ N(O.;- o-) under Ho.

XKX(K)* = a2 + b2

13
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E[X(K)Hg] = 0
_A

EIX®IH;) = 2N; Kk = Nfga
= 0; k # Nfgd

var [X(k)[Hg] = No?

var [X(k)IH{] = No2

Computing the DFT of the observed sequence is the optimal processor when the signal is
known exactly (See Section I111).

B. Power Spectrum (Periodogram)

INK) & S 1o

= 124w ” N2
= ﬁ(a +b-). a,b, N(O,-z-o) under Hy.
(See also Oppenheim and Schafer, 1975.)
ElIN(K)Hgl = o2
9 A:Z
E{IN(K)IH,] = a-+TN: k = NfpA
= o2 k # Nfgd
varllN(k)IHOI = o4
4, 2A°
var [IN(OIH ] = 0% + 0= =-N: k = Nfga
= ¢4 k # NfpA.

Note that the statistics of IN(k) are chi-square. Computing the power spectrum of
the observed sequence is the optimal processor when the signal is known except for phase
with the phase having a uniform distribution (See Section 1V).




e gy

C. Average Power Spectrum

Average K spectra each derived from a time sequence of length N.

K-
1
INKavg = ¥ z In(k);
i=0

L3 ko
=3y LX)l
Kvi_oN

K-
4 Skl d
EllNK)gygHol = 02
EllNK)gygH) = 02+é43N; k = Nfpa
= ¢2; k # Nfga

1
var [IN()yygiHol = 50

-
var [INK)glHy ) = 3 {o4+02‘7n}; k = NfpA
- 2ot k # NfpA.

Averaging power spectra computed from consecutive blocks of the observed sequence closely
approximates the optimal processor for IN:SNR << | when the signal is known except for
' phase, with the phase being uniformly distribured in each increment and independent between
b increments (See Section V).

e

Vil. AUTOCORRELATION FUNCTION
A. Autocomlat'ion Function

N-l-m
Rem €4 N xwXeem),  m=0,1,...,N-1.
N n=0

Note: Defining R,,(-m) = Ryx(m)

16




vt
INK) = ZIX(K)|

N-1
= =j(27/N)mk
= Ry (m) ei( #/N)m
m==(N-1)
(See Section VI for definition of I (k).)
E[Rxx(m)lﬂol = 02, m=
= 0, m >0
Al
E[R, (m)H,] = 02+ 2=, m=0
= N-m A2 < 2 f A
--N-Tws nfgma, m>0
2 4
var[Rxx(m)IHol = ia s m=0
= N';". m>0
N_

var [Rxx(m)lﬂll =7?

Note that the statistics of Rxx(m) are not Gaussian.

Define:
L-1
=ji(2n/L)mk
Syxtk. 8) @ z Ryx(m + 8) eJn/LImk, ISLKN-38.
m=0
Syx(k. &) is the DFT of an L-point segment of the autocorrelation function.

ELS, (k. &)lHgl = 0, 5=0
=0 5>0
4 4
ElSgy(k. IH|] = o7 + A (%'%ﬁ) 5=0:k = NipA

5 >0:k = NfpA

17




Y T YV T TPy ad T * Ty

= 4 l-.-_l_ - 2+ + =
var [Sy,(k, §)Hg] = o [N 2N2(L INL+L)|, 6§=0
= g4\ (-L2+2L(N-6)+L)}, §>0
2)2

[]
-~

var [Sxx(k, 8)|H| ]

In general, Sxx(k, 8) is complex. When & = 0, the expression for variance yields
twice the value obtained in Section VI B. In practice, only Re {Sxx(k, 0)} would be used.

B. Averaged Autocorrelation Function

Average K autocorrelation functions, each derived from a time sequence of length N.

K-1
=
Ryx(Myyg = X z Rxx(m);
i=0
K-1 N-l-m
=1 z 1 z X(n); X(n+m);, m=0, ..., N-I

: i=0 3 n=0

ElSyy(k, $)Hg) = 02, 5=0

n
W
+

1.

o

Jr=

]

|

h SR g

EIS, ,(k, 8)IH; ] 5=0;k = Nfpa

5 2 Re
A (L-L'*_-Ls), 5> 0;k = NfpA

4
var [Sy,(k, 8)Hg = 1, (—L2 +2NL+ L)] , =0

4
=of [ (-L3+2L(N-6)+L)] , §>0

var lex(k.8)|H|] =7
C. Windowed Autocorrelation Function
Consider the autocorrelation function created from a time sequence of length N.

Using a triangular sequence (Bartlett window), vwindow this function back to length L + &.
That is,

18




R,¥(m) = . " Ryy(m
L+6-1

The above is equivalent to defining

N-l-m

— — + = R N
to-ml n;) X(m) X(n+m), m=0,1,...,L+8-l

n
Q
(]

E[R, 5 (m)IHy] , m=0

= 0, m>0

-
EIR&m)H,] = o2 +4 m=0

L+6-m\ (N -m) A2 .
( T+3 )( N )—2—cos21:t0mA, m>0

var [R&(milHo) = 2o, m=0

L+5-m\2(N-m\ 4
( Y ) ( )o . m>0

va:r [RG(m)IH] = ?

Define:

L-1
Sk, 8) & z Ryptm + 8) e~ (27/L)mk
m=0

EIS,2k. §)Hgl = 07, §=0

= 0, §>0

EIS,%(k, 8)H, ] = 02+A—-(%--‘1;'), 5=0:k =Nfgd

]
__.), 5>0:k = Nfpa

19



var [S,9(k, 8)Ho) = o4k L2 43, L], 5=0:N>>L+5

§>0;
N>>L+6

n
Q

var [S, 52k, 8)IH{] =

[
-

Note that windowing (VII () and averaging (V11 B) are not equivalent. Averaging
autocorrelation functions implies that the data has been broken into K independent blocks,
each of length N. A windowe ] autocorrelation function is a moving average function across
the entire data sequence. Thus, each data sample is allowed tc interact with data up to
L + 8 lags into the past. In averaging, interaction between data samples is restricted to
within the individual data blocks.

VIll. REC (Recursive Exponential Correlator) i
Weight vector
WG & [Wol...., Wi T

WG+ 1) = (1-B) W G) + BXG - 6 - m) XG)

j=1
W) = 2 (1 - B~ 1K BX(k - & ~ m) X(k): Wp(0) =0
k=6+m
S[W,i)Hgl = o2 [1 -(1-p-1] | 5=m=0
= 0, §=0,m>0
= 0, 5>0
h ]
EIW,,)H| ] = A cos 2ng (8 + m) [t - (1 - gy=E+m-1] 5>0
- (] = B)~li=(6+m)-1)
var [W,()IHgl = 0433 [] (-p 3 ] §>0
2B -4~
var (W G)IH 1 = 2
Define:
L-]
i
Hk) & ) W) edn/Limk
m=0
E
20




E(Hj(Hgl = a2 (1-0 -1, 6=0
= 0, §>0
. 2
EIHKIHy) = o {1 - (1 - )1} +A2_(2L-C), 5=0
1 .
- & (_ZL_C) RELIR Y e

where:

: -L
Cax(]-p-1-8 1 1-(-§8)
s 2fpA [,_(,_3)-|/foA

402 . -2(L-1
var [H;(k)IHg] = 9787 L-(l -3)20-1-6) 1-(1-p)-2(L-1)
26- 82 1-(1-p"2

var [Hj(k)lﬂll =1

The REC is similar to the windowed autocorrelation function of Section VII C in
that both are moving average filters. In the former, the past is exponentially weighted
instead of uniformly as in the latter. Additionally, the REC closely resembles the weight
vector of the ALE (adaptive line enhancer) (Widrow, et al., 1975) under the condition of
low signal-to-noise ratio.

IX. SUMMARY

The primary emphasis in this report has been the relationship between currently
employed methods for the detection of a sinusoid obscured by white noise and three classi-
cal problems of detection theory. It was shown that the discrete Fourier transform, the
power spectrum, and the averaged power spectrum are each the optimal processor (in the
sense of making a least-risk decision) for a particular signal model. Of secondary importance,
the first- and second-order statistics under Hy (signal plus noise) and Hg (noise alone) were
compiled for several related processing schemes of current interest.
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